Cpc2, a fission yeast homologue of mammalian RACK1 protein, interacts with Ran1 (Pat1) kinase To regulate cell cycle progression and meiotic development.
نویسندگان
چکیده
The Schizosaccharomyces pombe ran1/pat1 gene regulates the transition between mitosis and meiosis. Inactivation of Ran1 (Pat1) kinase is necessary and sufficient for cells to exit the cell cycle and undergo meiosis. The yeast two-hybrid interaction trap was used to identify protein partners for Ran1/Pat1. Here we report the identification of one of these, Cpc2. Cpc2 encodes a homologue of RACK1, a WD protein with homology to the beta subunit of heterotrimeric G proteins. RACK1 is a highly conserved protein, although its function remains undefined. In mammalian cells, RACK1 physically associates with some signal transduction proteins, including Src and protein kinase C. Fission yeast cells containing a cpc2 null allele are viable but cell cycle delayed. cpc2Delta cells fail to accumulate in G(1) when starved of nitrogen. This leads to defects in conjugation and meiosis. Copurification studies show that although Cpc2 and Ran1 (Pat1) physically associate, Cpc2 does not alter Ran1 (Pat1) kinase activity in vitro. Using a Ran1 (Pat1) fusion to green fluorescent protein, we show that localization of the kinase is impaired in cpc2Delta cells. Thus, in parallel with the proposed role of RACK1 in mammalian cells, fission yeast cpc2 may function as an anchoring protein for Ran1 (Pat1) kinase. All defects associated with loss of cpc2 are reversed in cells expressing mammalian RACK1, demonstrating that the fission yeast and mammalian gene products are indeed functional homologues.
منابع مشابه
Fission yeast receptor of activated C kinase (RACK1) ortholog Cpc2 regulates mitotic commitment through Wee1 kinase.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including th...
متن کاملCharacterization of functional regions in the Schizosaccharomyces pombe mei3 developmental activator.
The Schizosaccharomyces pombe mei3(+) gene is expressed only in diploid cells undergoing meiosis. Ectopic expression of mei3(+) in haploid cells causes meiotic catastrophe. Mei3 is an inhibitor of Ran1/Pat1 kinase and contains a nine-amino-acid motif, Mei3-RKDIII, that resembles two regions in the Ste11 substrate for Ran1/Pat1. Substitution of serine for Arg-81 within Mei3-RKDIII transforms the...
متن کاملMolecular Mimicry in Development: Identification of ste11+ As a Substrate and mei3+ As a Pseudosubstrate Inhibitor of ran1+ Kinase
ran1+ (pat1+) kinase inhibits exit from the mitotic cell cycle and entry into meiosis. Inactivation of ran1+ by mei3+ is sufficient to precipitate the entire meiotic developmental program. Here, we show that the ste11+ transcription factor is a substrate for ran1+ in vitro and that this reaction is directly inhibited by mei3+. Sequence comparison reveals that ste11+ contains two domains homolog...
متن کامل14-3-3 Protein Interferes with the Binding of RNA to the Phosphorylated Form of Fission Yeast Meiotic Regulator Mei2p
The switch from mitosis to meiosis is controlled by the Pat1(Ran1) kinase-Mei2p system in Schizosaccharomyces pombe. Mei2p promotes both premeiotic DNA synthesis and meiosis I, and its RNA binding ability is essential for these two processes. Mei2p forms a dot structure in the nucleus prior to meiosis I, aided by a specific RNA species named "meiRNA". Pat1 kinase phosphorylates Mei2p on two pos...
متن کاملATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature
To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2000